Page 1

Displaying 1 – 3 of 3

Showing per page

A characterization of C 1 , 1 functions via lower directional derivatives

Dušan Bednařík, Karel Pastor (2009)

Mathematica Bohemica

The notion of ˜ -stability is defined using the lower Dini directional derivatives and was introduced by the authors in their previous papers. In this paper we prove that the class of ˜ -stable functions coincides with the class of C 1 , 1 functions. This also solves the question posed by the authors in SIAM J. Control Optim. 45 (1) (2006), pp. 383–387.

An a priori Campanato type regularity condition for local minimisers in the calculus of variations

Thomas J. Dodd (2010)

ESAIM: Control, Optimisation and Calculus of Variations

An a priori Campanato type regularity condition is established for a class of W1X local minimisers u ¯ of the general variational integral Ω F ( u ( x ) ) d x where Ω n is an open bounded domain, F is of class C2, F is strongly quasi-convex and satisfies the growth condition F ( ξ ) c ( 1 + | ξ | p ) for a p > 1 and where the corresponding Banach spaces X are the Morrey-Campanato space p , μ ( Ω , N × n ) , µ < n, Campanato space p , n ( Ω , N × n ) and the space of bounded mean oscillation BMO Ω , N × n ) . The admissible maps u : Ω N are of Sobolev class W1,p, satisfying a Dirichlet boundary...

Currently displaying 1 – 3 of 3

Page 1