Optimal feedback for perturbed bilinear control problems
The Linear-Quadratic (LQ) optimal control problem is studied for a class of first-order hyperbolic partial differential equation models by using a nonlinear infinite-dimensional (distributed parameter) Hilbert state-space description. First the dynamical properties of the linearized model around some equilibrium profile are studied. Next the LQ-feedback operator is computed by using the corresponding operator Riccati algebraic equation whose solution is obtained via a related matrix Riccati differential...
In optimal control problems with quadratic terminal cost functionals and systems dynamics linear with respect to control, the solution often has a bang-bang character. Our aim is to investigate structural solution stability when the problem data are subject to perturbations. Throughout the paper, we assume that the problem has a (possibly local) optimum such that the control is piecewise constant and almost everywhere takes extremal values. The points of discontinuity are the switching points. In...