The search session has expired. Please query the service again.
Displaying 361 –
380 of
928
An optimal control problem is studied
for a Lotka-Volterra system of three differential equations. It
models an ecosystem of three species which coexist. The species
are supposed to be separated from each others. Mathematically,
this is modeled with the aid of two control variables. Some
necessary conditions of optimality are found in order to maximize
the total number of individuals at the end of a given time
interval.
We study a two-dimensional model for micromagnetics, which consists in an energy functional over -valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....
We study a two-dimensional model for micromagnetics, which consists in an energy functional over S2-valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....
We consider the lower semicontinuous functional of the form where satisfies a given conservation law defined by differential operator of degree one with constant coefficients. We show that under certain constraints the well known Murat and Tartar’s -convexity condition for the integrand extends to the new geometric conditions satisfied on four dimensional symplexes. Similar conditions on three dimensional symplexes were recently obtained by the second author. New conditions apply to quasiconvex...
We consider the lower semicontinuous functional of the form
where u satisfies a given
conservation law defined by differential operator of degree one
with constant coefficients. We show that under certain constraints
the well known Murat and Tartar's Λ-convexity condition
for the integrand f extends to the new geometric conditions
satisfied on four dimensional symplexes. Similar conditions on
three dimensional symplexes were recently obtained by the second
author. New conditions apply...
In this paper we are concerned with a distributed optimal control problem governed by an elliptic partial differential equation. State constraints of box type are considered. We show that the Lagrange multiplier associated with the state constraints, which is known to be a measure, is indeed more regular under quite general assumptions. We discretize the problem by continuous piecewise linear finite elements and we are able to prove that, for the case of a linear equation, the order of convergence...
This paper is mainly concerned with a class of optimal control problems of systems governed by the nonlinear dynamic systems on time scales. Introducing the reasonable weak solution of nonlinear dynamic systems, the existence of the weak solution for the nonlinear dynamic systems on time scales and its properties are presented. Discussing L1-strong-weak lower semicontinuity of integral functional, we give sufficient conditions for the existence of optimal controls. Using integration by parts formula...
This paper is mainly
concerned with a class of optimal control problems of systems
governed by the nonlinear dynamic systems on time scales.
Introducing the reasonable weak solution of nonlinear dynamic
systems, the existence of the weak solution for the nonlinear
dynamic systems on time scales and its properties are presented.
Discussing L1-strong-weak lower semicontinuity of integral
functional, we give sufficient conditions for the existence of
optimal controls. Using integration by parts formula...
In this paper we study extremal properties of functional associated with the half–linear second order differential equation E. Necessary and sufficient condition for nonnegativity of this functional is given in two special cases: the first case is when both points are regular and the second is the case, when one end point is singular. The obtained results extend the theory of quadratic functionals.
In this paper multidimensional nonsmooth, nonconvex problems of the calculus of variations with codifferentiable integrand are studied. Special classes of codifferentiable functions, that play an important role in the calculus of variations, are introduced and studied. The codifferentiability of the main functional of the calculus of variations is derived. Necessary conditions for the extremum of a codifferentiable function on a closed convex set and its applications to the nonsmooth problems of...
Currently displaying 361 –
380 of
928