Page 1

Displaying 1 – 12 of 12

Showing per page

Feedback Nash equilibria in optimal taxation problems

Mikhail Krastanov, Rossen Rozenov (2009)

Open Mathematics

A well-known result in public economics is that capital income should not be taxed in the long run. This result has been derived using necessary optimality conditions for an appropriate dynamic Stackelberg game. In this paper we consider three models of dynamic taxation in continuous time and suggest a method for calculating their feedback Nash equilibria based on a sufficient condition for optimality. We show that the optimal tax on capital income is generally different from zero.

Finite-dimensionality of information states in optimal control of stochastic systems: a Lie algebraic approach

Charalambos D. Charalambous (1998)

Kybernetika

In this paper we introduce the sufficient statistic algebra which is responsible for propagating the sufficient statistic, or information state, in the optimal control of stochastic systems. Certain Lie algebraic methods widely used in nonlinear control theory, are then employed to derive finite- dimensional controllers. The sufficient statistic algebra enables us to determine a priori whether there exist finite-dimensional controllers; it also enables us to classify all finite-dimensional controllers....

First variation of the general curvature-dependent surface energy

Günay Doğan, Ricardo H. Nochetto (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider general surface energies, which are weighted integrals over a closed surface with a weight function depending on the position, the unit normal and the mean curvature of the surface. Energies of this form have applications in many areas, such as materials science, biology and image processing. Often one is interested in finding a surface that minimizes such an energy, which entails finding its first variation with respect to perturbations of the surface. We present a concise derivation...

First variation of the general curvature-dependent surface energy

Günay Doğan, Ricardo H. Nochetto (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider general surface energies, which are weighted integrals over a closed surface with a weight function depending on the position, the unit normal and the mean curvature of the surface. Energies of this form have applications in many areas, such as materials science, biology and image processing. Often one is interested in finding a surface that minimizes such an energy, which entails finding its first variation with respect to perturbations of the surface. We present a concise derivation...

Fractional Roesser problem and its optimization

Rafał Kamocki (2014)

Banach Center Publications

In the paper, a fractional continuous Roesser model is considered. Existence and uniqueness of a solution and continuous dependence of solutions on controls of the nonlinear model are investigated. Next, a theorem on the existence of an optimal solution for linear model with variable coefficients is proved.

Currently displaying 1 – 12 of 12

Page 1