Tabu search: global intensification using dynamic programming
We incorporate model uncertainty into a quadratic portfolio optimization framework. We consider an incomplete continuous time market with a non-tradable stochastic factor. Two stochastic game problems are formulated and solved using Hamilton-Jacobi-Bellman-Isaacs equations. The proof of existence and uniqueness of a solution to the resulting semilinear PDE is also provided. The latter can be used to extend many portfolio optimization results.
We present an overview of four approaches of the finite automata use in stringology: deterministic finite automaton, deterministic simulation of nondeterministic finite automaton, finite automaton as a model of computation, and compositions of finite automata solutions. We also show how the finite automata can process strings build over more complex alphabet than just single symbols (degenerate symbols, strings, variables).