Page 1 Next

Displaying 1 – 20 of 315

Showing per page

A Bellman approach for two-domains optimal control problems in ℝN

G. Barles, A. Briani, E. Chasseigne (2013)

ESAIM: Control, Optimisation and Calculus of Variations

This article is the starting point of a series of works whose aim is the study of deterministic control problems where the dynamic and the running cost can be completely different in two (or more) complementary domains of the space ℝN. As a consequence, the dynamic and running cost present discontinuities at the boundary of these domains and this is the main difficulty of this type of problems. We address these questions by using a Bellman approach: our aim is to investigate how to define properly...

A deterministic affine-quadratic optimal control problem

Yuanchang Wang, Jiongmin Yong (2014)

ESAIM: Control, Optimisation and Calculus of Variations

A deterministic affine-quadratic optimal control problem is considered. Due to the nature of the problem, optimal controls exist under some very mild conditions. Further, it is shown that under some assumptions, the optimal control is unique which leads to the differentiability of the value function. Therefore, the value function satisfies the corresponding Hamilton–Jacobi–Bellman equation in the classical sense, and the optimal control admits a state feedback representation. Under some additional...

A fast algorithm for the two dimensional HJB equation of stochastic control

J. Frédéric Bonnans, Élisabeth Ottenwaelter, Housnaa Zidani (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper analyses the implementation of the generalized finite differences method for the HJB equation of stochastic control, introduced by two of the authors in [Bonnans and Zidani, SIAM J. Numer. Anal. 41 (2003) 1008–1021]. The computation of coefficients needs to solve at each point of the grid (and for each control) a linear programming problem. We show here that, for two dimensional problems, this linear programming problem can be solved in O ( p m a x ) operations, where p m a x is the size of the stencil....

A fast algorithm for the two dimensional HJB equation of stochastic control

J. Frédéric Bonnans, Élisabeth Ottenwaelter, Housnaa Zidani (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper analyses the implementation of the generalized finite differences method for the HJB equation of stochastic control, introduced by two of the authors in [Bonnans and Zidani, SIAM J. Numer. Anal.41 (2003) 1008–1021]. The computation of coefficients needs to solve at each point of the grid (and for each control) a linear programming problem. We show here that, for two dimensional problems, this linear programming problem can be solved in O(pmax) operations, where pmax is the size of...

A game interpretation of the Neumann problem for fully nonlinear parabolic and elliptic equations

Jean-Paul Daniel (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We provide a deterministic-control-based interpretation for a broad class of fully nonlinear parabolic and elliptic PDEs with continuous Neumann boundary conditions in a smooth domain. We construct families of two-person games depending on a small parameter ε which extend those proposed by Kohn and Serfaty [21]. These new games treat a Neumann boundary condition by introducing some specific rules near the boundary. We show that the value function converges, in the viscosity sense, to the solution...

A general Hamilton-Jacobi framework for non-linear state-constrained control problems

Albert Altarovici, Olivier Bokanowski, Hasnaa Zidani (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The paper deals with deterministic optimal control problems with state constraints and non-linear dynamics. It is known for such problems that the value function is in general discontinuous and its characterization by means of a Hamilton-Jacobi equation requires some controllability assumptions involving the dynamics and the set of state constraints. Here, we first adopt the viability point of view and look at the value function as its epigraph. Then, we prove that this epigraph can always be described...

A level-set approach for inverse problems involving obstacles Fadil SANTOSA

Fadil Santosa (2010)

ESAIM: Control, Optimisation and Calculus of Variations

An approach for solving inverse problems involving obstacles is proposed. The approach uses a level-set method which has been shown to be effective in treating problems of moving boundaries, particularly those that involve topological changes in the geometry. We develop two computational methods based on this idea. One method results in a nonlinear time-dependant partial differential equation for the level-set function whose evolution minimizes the residual in the data fit. The second method...

A Mean Value Theorem for non Differentiable Mappings in Banach Spaces

Deville, Robert (1995)

Serdica Mathematical Journal

We prove that if f is a real valued lower semicontinuous function on a Banach space X and if there exists a C^1, real valued Lipschitz continuous function on X with bounded support and which is not identically equal to zero, then f is Lipschitz continuous of constant K provided all lower subgradients of f are bounded by K. As an application, we give a regularity result of viscosity supersolutions (or subsolutions) of Hamilton-Jacobi equations in infinite dimensions which satisfy a coercive condition....

A note on the optimal portfolio problem in discrete processes

Naoyuki Ishimura, Yuji Mita (2009)

Kybernetika

We deal with the optimal portfolio problem in discrete-time setting. Employing the discrete Itô formula, which is developed by Fujita, we establish the discrete Hamilton–Jacobi–Bellman (d-HJB) equation for the value function. Simple examples of the d-HJB equation are also discussed.

A note on the regularity of solutions of Hamilton-Jacobi equations with superlinear growth in the gradient variable

Pierre Cardaliaguet (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the regularity of solutions of first order Hamilton-Jacobi equation with super linear growth in the gradient variable. We show that the solutions are locally Hölder continuous with Hölder exponent depending only on the growth of the hamiltonian. The proof relies on a reverse Hölder inequality.

A note on the regularity of solutions of Hamilton-Jacobi equations with superlinear growth in the gradient variable

Pierre Cardaliaguet (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the regularity of solutions of first order Hamilton-Jacobi equation with super linear growth in the gradient variable. We show that the solutions are locally Hölder continuous with Hölder exponent depending only on the growth of the Hamiltonian. The proof relies on a reverse Hölder inequality.

Currently displaying 1 – 20 of 315

Page 1 Next