Value functions for Bolza problems with discontinuous lagrangians and Hamilton-Jacobi inequalities
We investigate the value function of the Bolza problem of the Calculus of Variations with a lower semicontinuous Lagrangian L and a final cost , and show that it is locally Lipschitz for t>0 whenever L is locally bounded. It also satisfies Hamilton-Jacobi inequalities in a generalized sense. When the Lagrangian is continuous, then the value function is the unique lower semicontinuous solution to the corresponding Hamilton-Jacobi equation, while for discontinuous Lagrangian we characterize...
We study a finite horizon problem for a system whose evolution is governed by a controlled ordinary differential equation, which takes also account of a hysteretic component: namely, the output of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton–Jacobi equation and prove that, under fairly general hypotheses, the value function is the unique bounded and uniformly continuous viscosity solution of the corresponding Cauchy problem.
We study a finite horizon problem for a system whose evolution is governed by a controlled ordinary differential equation, which takes also account of a hysteretic component: namely, the output of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton–Jacobi equation and prove that, under fairly general hypotheses, the value function is the unique bounded and uniformly continuous viscosity solution of the corresponding Cauchy problem.
We study the Bellman equation for undiscounted exit time optimal control problems with fully nonlinear lagrangians and fully nonlinear dynamics using the dynamic programming approach. We allow problems whose non-Lipschitz dynamics admit more than one solution trajectory for some choices of open loop controls and initial positions. We prove a uniqueness theorem which characterizes the value functions of these problems as the unique viscosity solutions of the corresponding Bellman equations that satisfy...
We study the Bellman equation for undiscounted exit time optimal control problems with fully nonlinear Lagrangians and fully nonlinear dynamics using the dynamic programming approach. We allow problems whose non-Lipschitz dynamics admit more than one solution trajectory for some choices of open loop controls and initial positions. We prove a uniqueness theorem which characterizes the value functions of these problems as the unique viscosity solutions of the corresponding Bellman equations that...
We apply a modification of the viscosity solution concept introduced in [8] to the Isaacs equation defined on the set attainable from a given set of initial conditions. We extend the notion of a lower strategy introduced by us in [17] to a more general setting to prove that the lower and upper values of a differential game are subsolutions (resp. supersolutions) in our sense to the upper (resp. lower) Isaacs equation of the differential game. Our basic restriction is that the variable duration time...