On primal-dual stability in convex optimization.
The minimization of a nonlinear function with linear and nonlinear constraints and simple bounds can be performed by minimizing an augmented Lagrangian function, including only the nonlinear constraints. This procedure is particularly interesting in case that the linear constraints are flow conservation equations, as there exist efficient techniques to solve nonlinear network problems. It is then necessary to estimate their multipliers, and variable reduction techniques can be used to carry out...
The regularity of Lagrange multipliers for state-constrained optimal control problems belongs to the basic questions of control theory. Here, we investigate bottleneck problems arising from optimal control problems for PDEs with certain mixed control-state inequality constraints. We show how to obtain Lagrange multipliers in Lp spaces for linear problems and give an application to linear parabolic optimal control problems.
The chronotherapy concept takes advantage of the circadian rhythm of cells physiology in maximising a treatment efficacy on its target while minimising its toxicity on healthy organs. The object of the present paper is to investigate mathematically and numerically optimal strategies in cancer chronotherapy. To this end a mathematical model describing the time evolution of efficiency and toxicity of an oxaliplatin anti-tumour treatment has been derived. We then applied an optimal control technique...
The chronotherapy concept takes advantage of the circadian rhythm of cells physiology in maximising a treatment efficacy on its target while minimising its toxicity on healthy organs. The object of the present paper is to investigate mathematically and numerically optimal strategies in cancer chronotherapy. To this end a mathematical model describing the time evolution of efficiency and toxicity of an oxaliplatin anti-tumour treatment has been derived. We then applied an optimal control...