Minkowski planes with Miquelian pairs.
Let be a Minkowski space with a unit ball and let be the Hausdorff metric induced by in the hyperspace of convex bodies (nonempty, compact, convex subsets of ℝ). R. Schneider [RSP] characterized pairs of elements of which can be joined by unique metric segments with respect to for the Euclidean unit ball Bⁿ. We extend Schneider’s theorem to the hyperspace over any two-dimensional Minkowski space.
The model of the Minkowski plane in the projective plane with a fixed conic sheds a new light on the connection between the Minkowski and hyperbolic geometries. The construction of the Minkowski plane in a hyperbolic plane over a Euclidean field is given. It is also proved that the geometry in an orthogonal bundle of circles is hyperbolic in a natural way.
There are three kinds of Benz planes: Möbius planes, Laguerre planes and Minkowski planes. A Minkowski plane satisfying an additional axiom is connected with some other structure called a nearaffine plane. We construct an analogous structure for a Laguerre plane. Moreover, our description is common for both cases.