-Bewegungen mit den -Automorphismen
J. Andre constructed a skewaffine structure as a group space of a normally transitive group. In this paper his construction is used to describe the structure of the set of circles not passing through a point of a Laguerre plane. Sufficient conditions to ensure that this structure is a skewaffine plane are given.
Dieser Artikel befasst sich mit den Gründen der reellen -dimensionalen Möbiusgeometrie. Hier werden 2 Behauptungen bewiessen: 1) Die Möbiustransformationen sind die einzigen -spärentreuen Bijektionen von ; 2) Jede Möbiumstransformation ist Produkt von maximal Spiegelungen, wobei neben Spiegelungen an Hyperebenen höchsterns zwei Spiegelungen an Hypersphären benötigt werden.
In this paper we show that well-known relationships connecting the Clifford algebra on negative euclidean space, Vahlen matrices, and Möbius transformations extend to connections with the Möbius loop or gyrogroup on the open unit ball in -dimensional euclidean space . One notable achievement is a compact, convenient formula for the Möbius loop operation , where the operations on the right are those arising from the Clifford algebra (a formula comparable to for the Möbius loop multiplication...
Using a new characterization of the Lorentz quadrics, we establish a reformulation of the Special Relativity Theory.