Page 1

Displaying 1 – 20 of 20

Showing per page

On the Lifshits Constant for Hyperspaces

K. Leśniak (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

The Lifshits theorem states that any k-uniformly Lipschitz map with a bounded orbit on a complete metric space X has a fixed point provided k < ϰ(X) where ϰ(X) is the so-called Lifshits constant of X. For many spaces we have ϰ(X) > 1. It is interesting whether we can use the Lifshits theorem in the theory of iterated function systems. Therefore we investigate the value of the Lifshits constant for several classes of hyperspaces.

Producto, convexificación y completación de espacios métricos generalizados y probabilísticos.

Claudi Alsina (1978)

Stochastica

En 1967 E. Trillas introdujo la noción de espacio métrico generalizado, al considerar métricas abstractas valoradas en semigrupos ordenados, unificando con este punto de vista algebraico-reticular las estructuras métricas reales de M. Fréchet ([5]) y los espacios métricos probabilísticos de K. Menger ([6]) (así como los espacios Booleanos de Blumenthal ([4]) y las métricas naturales definidas en grupos ordenados). En el presente artículo se abordan los problemas de la topología del orden, del producto,...

Zone and double zone diagrams in abstract spaces

Daniel Reem, Simeon Reich (2009)

Colloquium Mathematicae

A zone diagram of order n is a relatively new concept which was first defined and studied by T. Asano, J. Matoušek and T. Tokuyama. It can be interpreted as a state of equilibrium between n mutually hostile kingdoms. Formally, it is a fixed point of a certain mapping. These authors considered the Euclidean plane with finitely many singleton-sites and proved the existence and uniqueness of zone diagrams there. In the present paper we generalize this concept in various ways. We consider general sites...

Currently displaying 1 – 20 of 20

Page 1