Central points of convex sets
This paper gives necessary and sufficient conditions for the closure of a face in a compact convex set to be again a face. As applications of these results, several theorems scattered in the literature are proved in an economical and uniform manner.
In this paper we study big convexity theories, that is convexity theories that are not necessarily bounded. As in the bounded case (see [4]) such a convexity theory Γ gives rise to the category ΓC of (left) Γ-convex modules. This is an equationally presentable category, and we prove that it is indeed an algebraic category over Set. We also introduce the category ΓAlg of Γ-convex algebras and show that the category Frm of frames is isomorphic to the category of associative, commutative, idempotent...