The convexity of the subset space of a metric space
It is proved that there is a unique metrizable simplex whose extreme points are dense. This simplex is homogeneous in the sense that for every 2 affinely homeomorphic faces and there is an automorphism of which maps onto . Every metrizable simplex is affinely homeomorphic to a face of . The set of extreme points of is homeomorphic to the Hilbert space . The matrices which represent are characterized.
Standard facts about separating linear functionals will be used to determine how two cones and and their duals and may overlap. When is linear and and are cones, these results will be applied to and , giving a unified treatment of several theorems of the alternate which explain when contains an interior point of . The case when is the space of Hermitian matrices, is the positive semidefinite matrices, and yields new and known results about the existence of block diagonal...
Cet article étudie, sur l’ensemble des points extrémaux d’un convexe compact , des topologies faciales dont les fermés sont les traces de faces “parallélisables” (il existe une plus grande face disjointe de , et tout de s’écrit , avec unique). Les topologies faciales uniformisables sont en bijection avec les sous-espaces réticulés fermés et contenant 1 de l’espace des fonctions affines continues sur . Ceci redonne des résultats classiques sur les simplexes, et permet une étude...