Räumliche Zindlerkurven.
For every hemisphere K supporting a spherically convex body C of the d-dimensional sphere we consider the width of C determined by K. By the thickness Δ(C) of C we mean the minimum of the widths of C over all supporting hemispheres K of C. A spherically convex body is said to be reduced provided Δ(Z) < Δ(R) for every spherically convex body Z ⊂ R different from R. We characterize reduced spherical polygons on S². We show that every reduced spherical polygon is of thickness at most π/2. We...
Let CRCr denote an annulus formed by two non-concentric circles CR, Cr in the Euclidean plane. We prove that if Poncelet’s closure theorem holds for k-gons circuminscribed to CRCr, then there exist circles inside this annulus which satisfy Poncelet’s closure theorem together with Cr, with ngons for any n > k.