Displaying 201 – 220 of 403

Showing per page

On Bárány's theorems of Carathéodory and Helly type

Ehrhard Behrends (2000)

Studia Mathematica

The paper begins with a self-contained and short development of Bárány’s theorems of Carathéodory and Helly type in finite-dimensional spaces together with some new variants. In the second half the possible generalizations of these results to arbitrary Banach spaces are investigated. The Carathéodory-Bárány theorem has a counterpart in arbitrary dimensions under suitable uniform compactness or uniform boundedness conditions. The proper generalization of the Helly-Bárány theorem reads as follows:...

On exposed points and extremal points of convex sets in ℝⁿ and Hilbert space

Stoyu Barov, Jan J. Dijkstra (2016)

Fundamenta Mathematicae

Let be a Euclidean space or the Hilbert space ℓ², let k ∈ ℕ with k < dim , and let B be convex and closed in . Let be a collection of linear k-subspaces of . A set C ⊂ is called a -imitation of B if B and C have identical orthogonal projections along every P ∈ . An extremal point of B with respect to the projections under is a point that all closed subsets of B that are -imitations of B have in common. A point x of B is called exposed by if there is a P ∈ such that (x+P) ∩ B = x. In the present...

On Hadwiger's problem on inner parallel bodies

Eugenia Saorín (2009)

Banach Center Publications

We consider the problem of classifying the convex bodies in the 3-dimensional space depending on the differentiability of their associated quermassintegrals with respect to the one-parameter-depending family given by the inner/outer parallel bodies. It turns out that this problem is closely related to some behavior of the roots of the 3-dimensional Steiner polynomial.

On some vector balancing problems

Apostolos Giannopoulos (1997)

Studia Mathematica

Let V be an origin-symmetric convex body in n , n≥ 2, of Gaussian measure γ n ( V ) 1 / 2 . It is proved that for every choice u 1 , . . . , u n of vectors in the Euclidean unit ball B n , there exist signs ε j - 1 , 1 with ε 1 u 1 + . . . + ε n u n ( c l o g n ) V . The method used can be modified to give simple proofs of several related results of J. Spencer and E. D. Gluskin.

On splitting infinite-fold covers

Márton Elekes, Tamás Mátrai, Lajos Soukup (2011)

Fundamenta Mathematicae

Let X be a set, κ be a cardinal number and let ℋ be a family of subsets of X which covers each x ∈ X at least κ-fold. What assumptions can ensure that ℋ can be decomposed into κ many disjoint subcovers? We examine this problem under various assumptions on the set X and on the cover ℋ: among other situations, we consider covers of topological spaces by closed sets, interval covers of linearly ordered sets and covers of ℝⁿ by polyhedra and by arbitrary convex sets. We focus on...

Currently displaying 201 – 220 of 403