Parallelbeleuchtung konvexer Körper mit glatten Rändern
It is shown that two inequalities concerning second and fourth moments of isotropic normalized convex bodies in ℝⁿ are permanent under forming p-products. These inequalities are connected with a concentration of mass property as well as with a central limit property. An essential tool are certain monotonicity properties of the Γ-function.
If is a convex surface in a Euclidean space, then the squared intrinsic distance function is DC (d.c., delta-convex) on in the only natural extrinsic sense. An analogous result holds for the squared distance function from a closed set . Applications concerning -boundaries (distance spheres) and ambiguous loci (exoskeletons) of closed subsets of a convex surface are given.