Page 1

Displaying 1 – 5 of 5

Showing per page

Estimates on inner and outer radii of unit balls in normed spaces

Horst Martini, Zokhrab Mustafaev (2011)

Colloquium Mathematicae

The purpose of this paper is to continue the investigations on extremal values for inner and outer radii of the unit ball of a finite-dimensional real Banach space for the Holmes-Thompson and Busemann measures. Furthermore, we give a related new characterization of ellipsoids in d via codimensional cross-section measures.

Euclidean arrangements in Banach spaces

Daniel J. Fresen (2015)

Studia Mathematica

We study the way in which the Euclidean subspaces of a Banach space fit together, somewhat in the spirit of the Kashin decomposition. The main tool that we introduce is an estimate regarding the convex hull of a convex body in John's position with a Euclidean ball of a given radius, which leads to a new and simplified proof of the randomized isomorphic Dvoretzky theorem. Our results also include a characterization of spaces with nontrivial cotype in terms of arrangements of Euclidean subspaces.

Extremal sections of complex l p -balls, 0 < p ≤ 2

Alexander Koldobsky, Marisa Zymonopoulou (2003)

Studia Mathematica

We study the extremal volume of central hyperplane sections of complex n-dimensional l p -balls with 0 < p ≤ 2. We show that the minimum corresponds to hyperplanes orthogonal to vectors ξ = (ξ¹,...,ξⁿ) ∈ ℂⁿ with |ξ¹| = ... = |ξⁿ|, and the maximum corresponds to hyperplanes orthogonal to vectors with only one non-zero coordinate.

Currently displaying 1 – 5 of 5

Page 1