The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
There exists an absolute constant such that for any n-dimensional Banach space E there exists a k-dimensional subspace F ⊂ E with k≤ n/2 such that . The concept of volume ratio with respect to -spaces is used to prove the following distance estimate for : .
The geometry of random projections of centrally symmetric convex bodies in is studied. It is shown that if for such a body K the Euclidean ball is the ellipsoid of minimal volume containing it and a random n-dimensional projection is “far” from then the (random) body B is as “rigid” as its “distance” to permits. The result holds for the full range of dimensions 1 ≤ n ≤ λN, for arbitrary λ ∈ (0,1).
Currently displaying 1 –
2 of
2