Page 1

Displaying 1 – 2 of 2

Showing per page

Volume ratios in L p -spaces

Yehoram Gordon, Marius Junge (1999)

Studia Mathematica

There exists an absolute constant c 0 such that for any n-dimensional Banach space E there exists a k-dimensional subspace F ⊂ E with k≤ n/2 such that i n f e l l i p s o i d ε B E ( v o l ( B E ) / v o l ( ε ) ) 1 / n c 0 i n f z o n o i d Z B F ( v o l ( B F ) / v o l ( Z ) ) 1 / k . The concept of volume ratio with respect to p -spaces is used to prove the following distance estimate for 2 q p < : s u p F p , d i m F = n i n f G L q , d i m G = n d ( F , G ) c p q n ( q / 2 ) ( 1 / q - 1 / p ) .

Volumetric invariants and operators on random families of Banach spaces

Piotr Mankiewicz, Nicole Tomczak-Jaegermann (2003)

Studia Mathematica

The geometry of random projections of centrally symmetric convex bodies in N is studied. It is shown that if for such a body K the Euclidean ball B N is the ellipsoid of minimal volume containing it and a random n-dimensional projection B = P H ( K ) is “far” from P H ( B N ) then the (random) body B is as “rigid” as its “distance” to P H ( B N ) permits. The result holds for the full range of dimensions 1 ≤ n ≤ λN, for arbitrary λ ∈ (0,1).

Currently displaying 1 – 2 of 2

Page 1