On seven points in the boundary of a plane convex body in large relative distances.
We show that if μ₁, ..., μₘ are log-concave subgaussian or supergaussian probability measures in , i ≤ m, then for every F in the Grassmannian , where N = n₁ + ⋯ + nₘ and n< N, the isotropic constant of the marginal of the product of these measures, , is bounded. This extends known results on bounds of the isotropic constant to a larger class of measures.
We prove a stability result on the minimal self-perimeter L(B) of the unit disk B of a normed plane: if L(B) = 6 + ε for a sufficiently small ε, then there exists an affinely regular hexagon S such that S ⊂ B ⊂ (1 + 6∛ε) S.
On donne un développement asymptotique du profil iso pé ri mé tri que de muni d'une métrique riemannienne périodique, et des conséquences pour le problème de la forme d'équilibre des cristaux.