The search session has expired. Please query the service again.
We find conditions for a smooth nonlinear map f: U → V between open subsets of Hilbert or Banach spaces to be locally convex in the sense that for some c and each positive ɛ < c the image f(B ɛ(x)) of each ɛ-ball B ɛ(x) ⊂ U is convex. We give a lower bound on c via the second order Lipschitz constant Lip2(f), the Lipschitz-open constant Lipo(f) of f, and the 2-convexity number conv2(X) of the Banach space X.
An investigation is launched into the fundamental characteristics of operations on and between sets, with a focus on compact convex sets and star sets (compact sets star-shaped with respect to the origin) in -dimensional Euclidean space . It is proved that if , with three trivial exceptions, an operation between origin-symmetric compact convex sets is continuous in the Hausdorff metric, covariant, and associative if and only if it is addition for some . It is also demonstrated that if ,...
Currently displaying 1 –
6 of
6