Radial Minkowski additive operators
We give some characterizations for radial Minkowski additive operators and prove a new characterization of balls. Finally, we show the property of radial Minkowski homomorphism.
Page 1 Next
Lewen Ji (2021)
Czechoslovak Mathematical Journal
We give some characterizations for radial Minkowski additive operators and prove a new characterization of balls. Finally, we show the property of radial Minkowski homomorphism.
H. Martini, S. Wu (2008)
Extracta Mathematicae
Brandenberg, René, Theobald, Thorsten (2004)
Beiträge zur Algebra und Geometrie
Jürgen Eckhoff (1975)
Journal für die reine und angewandte Mathematik
Plubtieng, S., Kumam, P. (2006)
Journal of Applied Mathematics and Stochastic Analysis
Shlomo Reisner (1985)
Mathematica Scandinavica
Imre Bárány, Christian Buchta (1993)
Mathematische Annalen
Z. Füredi (1986)
Discrete & computational geometry
R. Schneider, F. Affentranger (1992)
Discrete & computational geometry
Caristi, Giuseppe (2008)
APPS. Applied Sciences
Angel, Omer, Benjamini, Itai, Virág, Bálint (2003)
Electronic Communications in Probability [electronic only]
Y. Gordon, A. E. Litvak, A. Pajor, N. Tomczak-Jaegermann (2007)
Studia Mathematica
We show that, given an n-dimensional normed space X, a sequence of independent random vectors , uniformly distributed in the unit ball of X*, with high probability forms an ε-net for this unit ball. Thus the random linear map defined by embeds X in with at most 1 + ε norm distortion. In the case X = ℓ₂ⁿ we obtain a random 1+ε-embedding into with asymptotically best possible relation between N, n, and ε.
Milman, Vitali (1998)
Documenta Mathematica
Ai Hua Fan, Jean-Pierre Kahane (1993)
Annales de l'I.H.P. Probabilités et statistiques
Josef Hoschek (1974)
Manuscripta mathematica
Gabriel P. Paternain (1993)
Manuscripta mathematica
Luis Montejano (1992)
Manuscripta mathematica
M. Katchalski (1978)
Aequationes mathematicae
G. Bianchi, M. Longinetti (1990)
Discrete & computational geometry
Marek Lassak (2015)
Colloquium Mathematicae
For every hemisphere K supporting a spherically convex body C of the d-dimensional sphere we consider the width of C determined by K. By the thickness Δ(C) of C we mean the minimum of the widths of C over all supporting hemispheres K of C. A spherically convex body is said to be reduced provided Δ(Z) < Δ(R) for every spherically convex body Z ⊂ R different from R. We characterize reduced spherical polygons on S². We show that every reduced spherical polygon is of thickness at most π/2. We...
Page 1 Next