Tangent cones, starshape and convexity.
This paper follows the article by V. Medek which solves the problem of finding the boundary of a convex polyhedron in both parallel and central projections. The aim is to give a method which yields a simple algorithm for the automation of an arbitrary graphic projection of a convex polyhedron. Section 1 of this paper recalls some necessary concepts from the graph theory. In Section 2 graphs are applied to determine visibility of a convex polyhedron.
We describe some known metrics in the family of convex sets which are stronger than the Hausdorff metric and propose a new one. These stronger metrics preserve in some sense the facial structure of convex sets under small changes of sets.