Page 1

Displaying 1 – 5 of 5

Showing per page

On area and side lengths of triangles in normed planes

Gennadiy Averkov, Horst Martini (2009)

Colloquium Mathematicae

Let d be a d-dimensional normed space with norm ||·|| and let B be the unit ball in d . Let us fix a Lebesgue measure V B in d with V B ( B ) = 1 . This measure will play the role of the volume in d . We consider an arbitrary simplex T in d with prescribed edge lengths. For the case d = 2, sharp upper and lower bounds of V B ( T ) are determined. For d ≥ 3 it is noticed that the tight lower bound of V B ( T ) is zero.

On the separation of parametric convex polyhedral sets with application in MOLP

Milan Hladík (2010)

Applications of Mathematics

We investigate diverse separation properties of two convex polyhedral sets for the case when there are parameters in one row of the constraint matrix. In particular, we deal with the existence, description and stability properties of the separating hyperplanes of such convex polyhedral sets. We present several examples carried out on PC. We are also interested in supporting separation (separating hyperplanes support both the convex polyhedral sets at given faces) and permanent separation (a hyperplane...

On the Weight of Minor Faces in Triangle-Free 3-Polytopes

Oleg V. Borodin, Anna O. Ivanova (2016)

Discussiones Mathematicae Graph Theory

The weight w(f) of a face f in a 3-polytope is the degree-sum of vertices incident with f. It follows from Lebesgue’s results of 1940 that every triangle-free 3-polytope without 4-faces incident with at least three 3-vertices has a 4-face with w ≤ 21 or a 5-face with w ≤ 17. Here, the bound 17 is sharp, but it was still unknown whether 21 is sharp. The purpose of this paper is to improve this 21 to 20, which is best possible.

Currently displaying 1 – 5 of 5

Page 1