Finite Coverings by Translates of Centrally Symmetric Convex Domains.
Fejes G. Tóth (1987)
Discrete & computational geometry
J.M. Wills, Fejes G. Tóth, P. Gritzmann (1989)
Discrete & computational geometry
Böröczky, K.jun., Wills, J.M. (1997)
Beiträge zur Algebra und Geometrie
Fernando Mário de Oliveira Filho, Frank Vallentin (2010)
Journal of the European Mathematical Society
We derive new upper bounds for the densities of measurable sets in which avoid a finite set of prescribed distances. The new bounds come from the solution of a linear programming problem. We apply this method to obtain new upper bounds for measurable sets which avoid the unit distance in dimensions . This gives new lower bounds for the measurable chromatic number in dimensions . We apply it to get a short proof of a variant of a recent result of Bukh which in turn generalizes theorems of Furstenberg,...
Leif Mejlbro (1987)
Acta Universitatis Carolinae. Mathematica et Physica
Michał Rams (2000)
Fundamenta Mathematicae
We prove that the upper Minkowski dimension of a compact set Λ is equal to the convergence exponent of any packing of the complement of Λ with polyhedra of size not smaller than a constant multiple of their distance from Λ.
Jörg M. Wills (1978)
Commentarii mathematici Helvetici
G. Fejes Tóth, G. Kuperberg (1998)
Monatshefte für Mathematik
Szirmai, Jenő (2005)
Beiträge zur Algebra und Geometrie
P. Frankl, J. Pach, V. Rödl (1984)
Monatshefte für Mathematik
Oded Schramm (1992)
Inventiones mathematicae
DAVID W. BOYD (1973)
Aequationes mathematicae
Mathieu Dutour Sikirić, Achill Schürmann, Frank Vallentin (2012)
Annales de l’institut Fourier
G.F. Voronoi (1868–1908) wrote two memoirs in which he describes two reduction theories for lattices, well-suited for sphere packing and covering problems. In his first memoir a characterization of locally most economic packings is given, but a corresponding result for coverings has been missing. In this paper we bridge the two classical memoirs.By looking at the covering problem from a different perspective, we discover the missing analogue. Instead of trying to find lattices giving economical coverings we consider lattices giving, at least locally, very uneconomical ones. We classify local covering maxima up to dimension and prove their existence in all dimensions beyond.New phenomena arise: Many highly symmetric lattices turn out to give uneconomical coverings; the covering density function is not a topological Morse function. Both phenomena are in sharp contrast with the packing problem.
KÁROLY BEZDEK (1986)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
Petr Stehlík, Václav Vopravil (2020)
Pokroky matematiky, fyziky a astronomie
Angloamerický matematik John Horton Conway byl všestrannou a charismatickou postavou, která významně ovlivnila teorie čísel, grup, her, uzlů, dynamických systémů i rekreační matematiku. Proslul svéráznou povahou i nekonvenčním přístupem k řešení problémů. Tento článek shrnuje stručně jeho neobvyklou životní cestu a představuje čtyři vybrané oblasti z jeho bohaté tvorby: nadreálná čísla, teorii kombinatorických her, hru života a klasifikaci sporadických grup.
EMIL MOLNÁR (1983)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
Kuperberg, Greg, Kuperberg, Krystyna, Kuperberg, Włodzimierz (2004)
Beiträge zur Algebra und Geometrie
Victor Klee, Claude Tricot (1987)
Mathematische Annalen
J. Horváth (1985)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
G. Robins, J.S. Salowe (1995)
Discrete & computational geometry