Spherical F-tilings by triangles and -sided regular polygons, .
Une surface projective convexe est le quotient d’un ouvert proprement convexe de l’espace projectif réel par un sous-groupe discret de . Nous donnons plusieurs caractérisations du fait qu’une surface projective convexe est de volume fini pour la mesure de Busemann. On en déduit que si n’est pas un triangle alors est strictement convexe, à bord et qu’une surface projective convexe est de volume fini si et seulement si la surface duale est de volume fini.
We prove that if a measurable domain tiles ℝ or ℝ² by translations, and if it is "close enough" to a line segment or a square respectively, then it admits a lattice tiling. We also prove a similar result for spectral sets in dimension 1, and give an example showing that there is no analogue of the tiling result in dimensions 3 and higher.
Suppose has a 2-dimensional expanding subspace , satisfies a regularity condition, called “good star”, and has , where is an oriented compound of . A morphism of the free group on is called a non-abelianization of if it has structure matrix . We show that there is a tiling substitution whose “boundary substitution” is a non-abelianization of . Such a tiling substitution leads to a self-affine tiling of with as its expansion. In the last section we find conditions on so...
Call a polygon rational if every pair of side lengths has rational ratio. We show that a convex polygon can be tiled with rational polygons if and only if it is itself rational. Furthermore we give a necessary condition for an arbitrary polygon to be tileable with rational polygons: we associate to any polygon a quadratic form , which must be positive semidefinite if is tileable with rational polygons.The above results also hold replacing the rationality condition with the following: a polygon...