Complete minimal surfaces in R3.
In this paper we review some topics on the theory of complete minimal surfaces in three dimensional Euclidean space.
In this paper we review some topics on the theory of complete minimal surfaces in three dimensional Euclidean space.
The paper gives an account of the recent development in 3-dimensional contact geometry. The central result of the paper states that there exists a unique tight contact structure on . Together with the earlier classification of overtwisted contact structures on 3-manifolds this result completes the classification of contact structures on .
These are the lecture notes of a minicourse given at a winter school in Marseille 2011. The aim of the course was to give an introduction to recent work on the geometry of the space of Kähler metrics associated to an ample line bundle. The emphasis of the course was the role of convexity, both as a motivating example and as a tool.