Displaying 281 – 300 of 383

Showing per page

On the theory of the 4-quasiplanar mappings of almost quaternionic spaces

Mikeš, Josef, Němčíková, Jana, Pokorná, Olga (1998)

Proceedings of the 17th Winter School "Geometry and Physics"

Authors’ abstract: “4-quasiplanar mappings of almost quaternionic spaces with affine connection without torsion are investigated. Geometrically motivated definitions of these mappings are presented. Based an these definitions, fundamental forms of these mappings are found, which are equivalent to the forms of 4-quasiplanar mappings introduced a priori by I. Kurbatova [Sov. Math. 30, 100-104 (1986; Zbl 0602.53029)]”.

On types of non-integrable geometrie

Friedrich, Thomas (2003)

Proceedings of the 22nd Winter School "Geometry and Physics"

A G-structure on a Riemannian manifold is said to be integrable if it is preserved by the Levi-Civita connection. In the presented paper, the following non-integrable G-structures are studied: SO(3)-structures in dimension 5; almost complex structures in dimension 6; G 2 -structures in dimension 7; Spin(7)-structures in dimension 8; Spin(9)-structures in dimension 16 and F 4 -structures in dimension 26. G-structures admitting an affine connection with totally skew-symmetric torsion are characterized....

Parabolic geometries determined by filtrations of the tangent bundle

Sagerschnig, Katja (2006)

Proceedings of the 25th Winter School "Geometry and Physics"

Summary: Let 𝔤 be a real semisimple | k | -graded Lie algebra such that the Lie algebra cohomology group H 1 ( 𝔤 - , 𝔤 ) is contained in negative homogeneous degrees. We show that if we choose G = Aut ( 𝔤 ) and denote by P the parabolic subgroup determined by the grading, there is an equivalence between regular, normal parabolic geometries of type ( G , P ) and filtrations of the tangent bundle, such that each symbol algebra gr ( T x M ) is isomorphic to the graded Lie algebra 𝔤 - . Examples of parabolic geometries determined by filtrations of the...

Peak functions on convex domains

Kolář, Martin (2000)

Proceedings of the 19th Winter School "Geometry and Physics"

Let Ω n be a domain with smooth boundary and p Ω . A holomorphic function f on Ω is called a C k ( k = 0 , 1 , 2 , ) peak function at p if f C k ( Ω ¯ ) , f ( p ) = 1 , and | f ( q ) | < 1 for all q Ω ¯ { p } . If Ω is strongly pseudoconvex, then C peak functions exist. On the other hand, J. E. Fornaess constructed an example in 2 to show that this result fails, even for C 1 functions, on a weakly pseudoconvex domain [Math. Ann. 227, 173-175 (1977; Zbl 0346.32026)]. Subsequently, E. Bedford and J. E. Fornaess showed that there is always a continuous peak function on a...

Pontryagin algebra of a transitive Lie algebroid

Kubarski, Jan (1990)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0699.00032.] It was previously known that for every principal fibre bundle P there is some corresponding transitive Lie algebroid A(P) - a vector bundle equipped with some structure like the structure of a Lie algebra in the module of sections. The author of this article shows that the Chern-Weil homomorphism of P is a notion of the Lie algebroid of P, i.e. knowing only A(P) of P one can uniquely reproduce the ring of invariant polynomials ( V g * ) I and the Chern-Weil...

Prolongation of vector fields to jet bundles

Kolář, Ivan, Slovák, Jan (1990)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0699.00032.] In this interesting paper the authors show that all natural operators transforming every projectable vector field on a fibered manifold Y into a vector field on its r-th prolongation J r Y are the constant multiples of the flow operator. Then they deduce an analogous result for the natural operators transforming every vector field on a manifold M into a vector field on any bundle of contact elements over M.

Properties of product preserving functors

Gancarzewicz, Jacek, Mikulski, Włodzimierz, Pogoda, Zdzisław (1994)

Proceedings of the Winter School "Geometry and Physics"

A product preserving functor is a covariant functor from the category of all manifolds and smooth mappings into the category of fibered manifolds satisfying a list of axioms the main of which is product preserving: ( M 1 × M 2 ) = ( M 1 ) × ( M 2 ) . It is known that any product preserving functor is equivalent to a Weil functor T A . Here T A ( M ) is the set of equivalence classes of smooth maps ϕ : n M and ϕ , ϕ ' are equivalent if and only if for every smooth function f : M the formal Taylor series at 0 of f ϕ and f ϕ ' are equal in A = [ [ x 1 , , x n ] ] / 𝔞 . In this paper all...

q -deformed inverse scattering problem

Hrubý, J. (1994)

Proceedings of the Winter School "Geometry and Physics"

Summary: Starting from the physical point of view on the Miura transformation as reflectionless potential and its connection with supersymmetry we define a scaling q -deformation of this to obtain q -deformed supersymmetric quantum mechanics. An application to an inverse scattering problem is given.

Quantum deformation of relativistic supersymmetry

Sobczyk, Jan (1996)

Proceedings of the 15th Winter School "Geometry and Physics"

From the text: The author reviews recent research on quantum deformations of the Poincaré supergroup and superalgebra. It is based on a series of papers (coauthored by P. Kosiński, J. Lukierski, P. Maślanka and A. Nowicki) and is motivated by both mathematics and physics. On the mathematical side, some new examples of noncommutative and noncocommutative Hopf superalgebras have been discovered. Moreover, it turns out that they have an interesting internal structure of graded bicrossproduct. As far...

Currently displaying 281 – 300 of 383