Displaying 341 – 360 of 383

Showing per page

Symmetrization of brace algebra

Daily, Marilyn, Lada, Tom (2006)

Proceedings of the 25th Winter School "Geometry and Physics"

Summary: We show that the symmetrization of a brace algebra structure yields the structure of a symmetric brace algebra. We also show that the symmetrization of the natural brace structure on k 1 Hom ( V k , V ) coincides with the natural symmetric brace structure on k 1 Hom ( V k , V ) a s , the direct sum of spaces of antisymmetric maps V k V .

Symplectic solution supermanifolds in field theory

Schmitt, T. (1997)

Proceedings of the 16th Winter School "Geometry and Physics"

Summary: For a large class of classical field models used for realistic quantum field theoretic models, an infinite-dimensional supermanifold of classical solutions in Minkowski space can be constructed. This solution supermanifold carries a natural symplectic structure; the resulting Poisson brackets between the field strengths are the classical prototypes of the canonical (anti-) commutation relations. Moreover, we discuss symmetries and the Noether theorem in this context.

The approximate symmetries of the vacuum Einstein equations

Tiller, Petr (1997)

Proceedings of the 16th Winter School "Geometry and Physics"

The author reviews the theory of approximate infinitesimal symmetries of partial differential equations. Based on this and on Ibragimov's result on the general symmetries of the vacuum Einstein equation, he proposes a method to calculate approximate symmetries of the non-vacuum Einstein equation: the energy-momentum tensor is treated like a perturbation.

The iterated version of a translative integral formula for sets of positive reach

Rataj, Jan (1997)

Proceedings of the 16th Winter School "Geometry and Physics"

By taking into account the work of J. Rataj and M. Zähle [Geom. Dedicata 57, 259-283 (1995; Zbl 0844.53050)], R. Schneider and W. Weil [Math. Nachr. 129, 67-80 (1986; Zbl 0602.52003)], W. Weil [Math. Z. 205, 531-549 (1990; Zbl 0705.52006)], an integral formula is obtained here by using the technique of rectifiable currents.This is an iterated version of the principal kinematic formula for q sets of positive reach and generalized curvature measures.

The Penrose transform and Clifford analysis

Bureš, J., Souček, V. (1991)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0742.00067.]The Penrose transform is always based on a diagram of homogeneous spaces. Here the case corresponding to the orthogonal group S O ( 2 n , C ) is studied by means of Clifford analysis [see F. Brackx, R. Delanghe and F. Sommen: Clifford analysis (1982; Zbl 0529.30001)], and is presented a simple approach using the Dolbeault realization of the corresponding cohomology groups and a simple calculus with differential forms (the Cauchy integral formula for solutions of...

The principal prolongation of first order G -structures

Slovák, Jan (1996)

Proceedings of the Winter School "Geometry and Physics"

The author uses the concept of the first principal prolongation of an arbitrary principal filter bundle to develop an alternative procedure for constructing the prolongations of a class of the first-order G -structures. The motivation comes from the almost Hermitian structures, which can be defined either as standard first-order structures, or higher-order structures, but if they do not admit a torsion-free connection, the classical constructions fail in general.

Currently displaying 341 – 360 of 383