On holomorphically projective mappings of e -Kähler manifolds

Irena Hinterleitner

Archivum Mathematicum (2012)

  • Volume: 048, Issue: 5, page 333-338
  • ISSN: 0044-8753

Abstract

top
In this paper we study fundamental equations of holomorphically projective mappings of e -Kähler spaces (i.e. classical, pseudo- and hyperbolic Kähler spaces) with respect to the smoothness class of metrics. We show that holomorphically projective mappings preserve the smoothness class of metrics.

How to cite

top

Hinterleitner, Irena. "On holomorphically projective mappings of $e$-Kähler manifolds." Archivum Mathematicum 048.5 (2012): 333-338. <http://eudml.org/doc/251401>.

@article{Hinterleitner2012,
abstract = {In this paper we study fundamental equations of holomorphically projective mappings of $e$-Kähler spaces (i.e. classical, pseudo- and hyperbolic Kähler spaces) with respect to the smoothness class of metrics. We show that holomorphically projective mappings preserve the smoothness class of metrics.},
author = {Hinterleitner, Irena},
journal = {Archivum Mathematicum},
keywords = {holomorphically projective mappings; smoothness class; Kähler space; hyperbolic Kähler space; holomorphically projective mappings; smoothness class; Kähler space; hyperbolic Kähler space},
language = {eng},
number = {5},
pages = {333-338},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On holomorphically projective mappings of $e$-Kähler manifolds},
url = {http://eudml.org/doc/251401},
volume = {048},
year = {2012},
}

TY - JOUR
AU - Hinterleitner, Irena
TI - On holomorphically projective mappings of $e$-Kähler manifolds
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 5
SP - 333
EP - 338
AB - In this paper we study fundamental equations of holomorphically projective mappings of $e$-Kähler spaces (i.e. classical, pseudo- and hyperbolic Kähler spaces) with respect to the smoothness class of metrics. We show that holomorphically projective mappings preserve the smoothness class of metrics.
LA - eng
KW - holomorphically projective mappings; smoothness class; Kähler space; hyperbolic Kähler space; holomorphically projective mappings; smoothness class; Kähler space; hyperbolic Kähler space
UR - http://eudml.org/doc/251401
ER -

References

top
  1. Alekseevsky, D. V., Pseudo–Kähler and para–Kähler symmetric spaces. Handbook of pseudo–Riemannian geometry and supersymmetry, ndbook of pseudo–Riemannian geometry and supersymmetry, IRMA Lect. Math. Theor. Phys. 16 (2010), 703–729. (2010) MR2681606
  2. Beklemishev, D. V., Differential geometry of spaces with almost complex structure, Akad. Nauk SSSR Inst. Naučn. Informacii, Moscow, 1965 Geometry (1963), 165–212. (1963) MR0192434
  3. Domashev, V. V., Mikeš, J., 10.1007/BF01153160, Math. Notes 23 (1978), 160–163. (1978) DOI10.1007/BF01153160
  4. Hinterleitner, I., Mikeš, J., Geodesic mappings and Einstein spaces, Geometric Methods in Physics, XXX Workshop in Białowieża, Poland 2011, arXiv:1201.2827v1 [math.DG], 2012. 
  5. Kähler, E., 10.1007/BF02940642, Sem. Hamburg. Univ. 9 (1933), 173–186. (1933) DOI10.1007/BF02940642
  6. Kurbatova, I. N., HP–mappings of H–spaces, Ukrain. Geom. Sb. 27 (1984), 75–83. (1984) Zbl0571.58006MR0767421
  7. Mikeš, J., Geodesic and holomorphically projective mappings of special Riemannian spaces, Ph.D. thesis, Odessa, 1979. (1979) 
  8. Mikeš, J., On holomorphically projective mappings of Kählerian spaces, Ukrain. Geom. Sb. 23 (1980), 90–98. (1980) Zbl0463.53013
  9. Mikeš, J., 10.1007/BF02414875, J. Math. Sci. 89 (1998), 1334–1353. (1998) MR1619720DOI10.1007/BF02414875
  10. Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic mappings and some generalizations, Palacky University Press, Olomouc, 2009. (2009) Zbl1222.53002MR2682926
  11. Otsuki, T., Tashiro, Y., On curves in Kaehlerian spaces, Math. J. Okayama Univ. 4 (1954), 57–78. (1954) Zbl0057.14101MR0066024
  12. Prvanović, M., Holomorphically projective transformations in a locally product space, Math. Balkanica 1 (1971), 195–213. (1971) MR0288710
  13. Rashevsky, P. A., Scalar fields in fibered space, Trudy Sem. Vektor. Tenzor. Anal. 6 (1948), 225–248. (1948) 
  14. Shirokov, P. A., Selected investigations on geometry, Kazan' University Press, 1966. (1966) 
  15. Sinyukov, N. S., Geodesic mappings of Riemannian spaces, Moscow, Nauka, 1979. (1979) Zbl0637.53020MR0552022
  16. Sinyukov, N. S., Kurbatova, I. N., Mikeš, J., Holomorphically projective mappings of Kähler spaces, Odessa, Odessk. Univ., 1985. (1985) 
  17. Škodová, M., Mikeš, J., Pokorná, O., On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces, Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 309–316. (2005) Zbl1109.53019MR2152369
  18. Tachibana, S.–I., Ishihara, S., 10.2748/tmj/1178244489, Tôhoku Math. J. (2) 12 (1960), 77–101. (1960) Zbl0093.35404MR0120599DOI10.2748/tmj/1178244489
  19. Yano, K., Differential geometry of complex and almost comlex spaces, Pergamon Press, 1965. (1965) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.