Page 1

Displaying 1 – 3 of 3

Showing per page

G δ -modification of compacta and cardinal invariants

Aleksander V. Arhangel'skii (2006)

Commentationes Mathematicae Universitatis Carolinae

Given a space X , its G δ -subsets form a basis of a new space X ω , called the G δ -modification of X . We study how the assumption that the G δ -modification X ω is homogeneous influences properties of X . If X is first countable, then X ω is discrete and, hence, homogeneous. Thus, X ω is much more often homogeneous than X itself. We prove that if X is a compact Hausdorff space of countable tightness such that the G δ -modification of X is homogeneous, then the weight w ( X ) of X does not exceed 2 ω (Theorem 1). We also establish...

Generalized Helly spaces, continuity of monotone functions, and metrizing maps

Lech Drewnowski, Artur Michalak (2008)

Fundamenta Mathematicae

Given an ordered metric space (in particular, a Banach lattice) E, the generalized Helly space H(E) is the set of all increasing functions from the interval [0,1] to E considered with the topology of pointwise convergence, and E is said to have property (λ) if each of these functions has only countably many points of discontinuity. The main objective of the paper is to study those ordered metric spaces C(K,E), where K is a compact space, that have property (λ). In doing so, the guiding idea comes...

Group Structures and Rectifiability in Powers of Spaces

G. J. Ridderbos (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

We prove that if some power of a space X is rectifiable, then X π w ( X ) is rectifiable. It follows that no power of the Sorgenfrey line is a topological group and this answers a question of Arhangel’skiĭ. We also show that in Mal’tsev spaces of point-countable type, character and π-character coincide.

Currently displaying 1 – 3 of 3

Page 1