The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give a characterization of a paracompact -space to have a -diagonal in terms of three rectangular covers of . Moreover, we show that a local property and a global property of a space are given by the orthocompactness of .
Arhangel’skiĭ defines in [Topology Appl. 70 (1996), 87–99], as one of various notions on relative topological properties, strong normality of in for a subspace of a topological space , and shows that this is equivalent to normality of , where denotes the space obtained from by making each point of isolated. In this paper we investigate for a space , its subspace and a space the normality of the product in connection with the normality of . The cases for paracompactness, more...
A space X is star-Hurewicz if for each sequence (𝒰ₙ: n ∈ ℕ) of open covers of X there exists a sequence (𝓥ₙ: n ∈ ℕ) such that for each n, 𝓥ₙ is a finite subset of 𝒰ₙ, and for each x ∈ X, x ∈ St(⋃ 𝓥ₙ,𝒰ₙ) for all but finitely many n. We investigate the relationship between star-Hurewicz spaces and related spaces, and also study topological properties of star-Hurewicz spaces.
In ZF, i.e., the Zermelo-Fraenkel set theory minus the Axiom of Choice AC, we investigate the relationship between the Tychonoff product , where 2 is 2 = 0,1 with the discrete topology, and the Stone space S(X) of the Boolean algebra of all subsets of X, where X = ω,ℝ. We also study the possible placement of well-known topological statements which concern the cited spaces in the hierarchy of weak choice principles.
As per the title, the nature of sets that can be removed from a product of more than one connected, arcwise connected, or point arcwise connected spaces while preserving the appropriate kind of connectedness is studied. This can depend on the cardinality of the set being removed or sometimes just on the cardinality of what is removed from one or two factor spaces. Sometimes it can depend on topological properties of the set being removed or its trace on various factor spaces. Some of the results...
Currently displaying 1 –
13 of
13