-categories
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Page 1 Next
Miroslav Hušek (1964)
Commentationes Mathematicae Universitatis Carolinae
Barr, Michael, Kennison, John F., Raphael, R. (2009)
Theory and Applications of Categories [electronic only]
Oleh R. Nykyforchyn (1997)
Commentationes Mathematicae Universitatis Carolinae
We define and investigate a generalization of the notion of convex compacta. Namely, for semiconvex combination in a semiconvex compactum we allow the existence of non-trivial loops connecting a point with itself. It is proved that any semiconvex compactum contains two non-empty convex compacta, the center and the weak center. The center is the largest compactum such that semiconvex combination induces a convex structure on it. The convex structure on the weak center does not necessarily coincide...
Roman Frič, Ján Jakubík (2001)
Czechoslovak Mathematical Journal
We study sequential convergences defined on a Boolean algebra by systems of maximal filters. We describe the order properties of the system of all such convergences. We introduce the category of 2-generated convergence Boolean algebras and generalize the construction of Novák sequential envelope to such algebras.
Jiří Vilímovský (1980)
Czechoslovak Mathematical Journal
Jan Reiterman (1979)
Commentationes Mathematicae Universitatis Carolinae
El-Saady, Kamal, Bakier, M.Y. (2007)
International Journal of Mathematics and Mathematical Sciences
Z. P. Mamuzić (1986)
Matematički Vesnik
Beshimov, R.B. (2004)
Zapiski Nauchnykh Seminarov POMI
Friedrich W. Bauer (1978)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Luciano Stramaccia (1989)
Commentationes Mathematicae Universitatis Carolinae
Ivanov, A.A. (2004)
Zapiski Nauchnykh Seminarov POMI
I. Moerdijk (1984)
Compositio Mathematica
Mynard, Frédéric (2000)
Commentationes Mathematicae Universitatis Carolinae
Frédéric Mynard (2000)
Commentationes Mathematicae Universitatis Carolinae
The problem of Y. Tanaka [10] of characterizing the topologies whose products with each first-countable space are sequential, is solved. The spaces that answer the problem are called strongly sequential spaces in analogy to strongly Fréchet spaces.
Maurizio Trombetta (1979)
Rendiconti del Seminario Matematico della Università di Padova
Taylor, Paul (2002)
Theory and Applications of Categories [electronic only]
Martin Sleziak (2003)
Mathematica Slovaca
Mario Chartrelle (1969)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Bernard Brunet (1978)
Annales scientifiques de l'Université de Clermont. Mathématiques
Page 1 Next