On a construct of closure spaces
Page 1 Next
Josef Šlapal (1997)
Rendiconti del Seminario Matematico della Università di Padova
Šostak, A. P. (1985)
Proceedings of the 13th Winter School on Abstract Analysis
J. Adámek, H. Herrlich, J. Rosický, W. Tholen (2002)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Petr Simon (1994)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Xiangdong Chen (1992)
Commentationes Mathematicae Universitatis Carolinae
The structure of binary coproducts in the category of frames is analyzed, and the results are then applied widely in the study of compactness, local compactness (continuous frames), separatedness, pushouts and closed frame homomorphisms.
Anna Tozzi, Oswald Wyler (1987)
Acta Universitatis Carolinae. Mathematica et Physica
Aarno Hohti, Jan Pelant (1985)
Fundamenta Mathematicae
Aleksander V. Arhangel'skii, Juraj Činčura (1984)
Commentationes Mathematicae Universitatis Carolinae
Veniamin Shteinbuk, Alexander P. Šostak (1992)
Kybernetika
Josef Niederle (1992)
Czechoslovak Mathematical Journal
Raphael, R., Woods, R.G. (2005)
Theory and Applications of Categories [electronic only]
L. Karchevska, Taras Radul (2012)
Commentationes Mathematicae Universitatis Carolinae
A. Chigogidze defined for each normal functor on the category Comp an extension which is a normal functor on the category Tych. We consider this extension for any functor on the category Comp and investigate which properties it preserves from the definition of normal functor. We investigate as well some topological properties of such extension.
Teleiko, Andrii (1998)
Serdica Mathematical Journal
It is proved that there exists no extension of any non-trivial weakly normal functor of finite degree onto the Kleisli category of the inclusion hyperspace monad.
Andrii Teleiko (1996)
Commentationes Mathematicae Universitatis Carolinae
The problem of extension of normal functors to the Kleisli categories of the inclusion hyperspace monad and its submonads is considered. Some negative results are obtained.
Hans-E. Porst (1987)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Ivanov, A.V. (2001)
Sibirskij Matematicheskij Zhurnal
Artur Piękosz (2013)
Annales Polonici Mathematici
We begin a systematic study of the category GTS of generalized topological spaces (in the sense of H. Delfs and M. Knebusch) and their strictly continuous mappings. We reformulate the axioms. Generalized topology is found to be connected with the concept of a bornological universe. Both GTS and its full subcategory SS of small spaces are topological categories. The second part of this paper will also appear in this journal.
Artur Piękosz (2013)
Annales Polonici Mathematici
This is the second part of A. Piękosz [Ann. Polon. Math. 107 (2013), 217-241]. The categories GTS(M), with M a non-empty set, are shown to be topological. Several related categories are proved to be finitely complete. Locally small and nice weakly small spaces can be described using certain sublattices of power sets. Some important elements of the theory of locally definable and weakly definable spaces are reconstructed in a wide context of structures with topologies.
Friedhelm Schwarz, Sibylle Weck-Schwarz (1992)
Commentationes Mathematicae Universitatis Carolinae
It is shown that the quotient maps of a monotopological construct A which are preserved by pullbacks along embeddings, projections, or arbitrary morphisms, can be characterized by being quotient maps in appropriate extensions of A.
N. D. Macheras (1993)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Page 1 Next