-generalized closed sets.
We prove that, assuming MA, every crowded space is -resolvable if it satisfies one of the following properties: (1) it contains a -network of cardinality constituted by infinite sets, (2) , (3) is a Baire space and and (4) is a Baire space and has a network with cardinality and such that the collection of the finite elements in it constitutes a -locally finite family. Furthermore, we prove that the existence of a Baire irresolvable space is equivalent to the existence of...
In this paper we show that a minimal space in which compact subsets are closed is countably compact. This answers a question posed in [1].