Displaying 21 – 40 of 386

Showing per page

A generalization of Magill's Theorem for non-locally compact spaces

Gary D. Faulkner, Maria Cristina Vipera (1995)

Commentationes Mathematicae Universitatis Carolinae

In the theory of compactifications, Magill's theorem that the continuous image of a remainder of a space is again a remainder is one of the most important theorems in the field. It is somewhat unfortunate that the theorem holds only in locally compact spaces. In fact, if all continuous images of a remainder are again remainders, then the space must be locally compact. This paper is a modification of Magill's result to more general spaces. This of course requires restrictions on the nature of the...

A new characterization of Eberlein compacta

Luis Oncina (2001)

Studia Mathematica

We give a sufficient and necessary condition for a Radon-Nikodým compact space to be Eberlein compact in terms of a separable fibre connecting weak-* and norm approximation.

A nice class extracted from C p -theory

Vladimir Vladimirovich Tkachuk (2005)

Commentationes Mathematicae Universitatis Carolinae

We study systematically a class of spaces introduced by Sokolov and call them Sokolov spaces. Their importance can be seen from the fact that every Corson compact space is a Sokolov space. We show that every Sokolov space is collectionwise normal, ω -stable and ω -monolithic. It is also established that any Sokolov compact space X is Fréchet-Urysohn and the space C p ( X ) is Lindelöf. We prove that any Sokolov space with a G δ -diagonal has a countable network and obtain some cardinality restrictions on subsets...

A Ramsey theorem for polyadic spaces

Murray Bell (1996)

Fundamenta Mathematicae

A polyadic space is a Hausdorff continuous image of some power of the one-point compactification of a discrete space. We prove a Ramsey-like property for polyadic spaces which for Boolean spaces can be stated as follows: every uncountable clopen collection contains an uncountable subcollection which is either linked or disjoint. One corollary is that ( α κ ) ω is not a universal preimage for uniform Eberlein compact spaces of weight at most κ, thus answering a question of Y. Benyamini, M. Rudin and M. Wage....

Currently displaying 21 – 40 of 386