Nets and compactness
Page 1
Thampuran, D.V. (1969)
Portugaliae mathematica
Ryszard Frankiewicz (1981)
Fundamenta Mathematicae
Marek Cúth (2014)
Commentationes Mathematicae Universitatis Carolinae
We prove some generalizations of results concerning Valdivia compact spaces (equivalently spaces with a commutative retractional skeleton) to the spaces with a retractional skeleton (not necessarily commutative). Namely, we show that the dual unit ball of a Banach space is Corson provided the dual unit ball of every equivalent norm has a retractional skeleton. Another result to be mentioned is the following. Having a compact space , we show that is Corson if and only if every continuous image...
Pedro Morales (1974)
Petr Simon, Martin Weese (1985)
Commentationes Mathematicae Universitatis Carolinae
Frolík, Z., Holický, P. (1980)
Abstracta. 8th Winter School on Abstract Analysis
Eric K. Douwen (1980)
Commentationes Mathematicae Universitatis Carolinae
G. Di Maio, E. Meccariello, Somashekhar Naimpally (2004)
Czechoslovak Mathematical Journal
One of the most celebrated results in the theory of hyperspaces says that if the Vietoris topology on the family of all nonempty closed subsets of a given space is normal, then the space is compact (Ivanova-Keesling-Velichko). The known proofs use cardinality arguments and are long. In this paper we present a short proof using known results concerning Hausdorff uniformities.
Murray G. Bell (1990)
Commentationes Mathematicae Universitatis Carolinae
Ondřej F. K. Kalenda (2004)
Commentationes Mathematicae Universitatis Carolinae
We show that a compact space has a dense set of points if it can be covered by countably many Corson countably compact spaces. If these Corson countably compact spaces may be chosen to be dense in , then is even Corson.
A. Pultr, A. Tozzi (1992)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Philippe Antoine (1973)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
J. Nikiel, L. Treybig (1996)
Colloquium Mathematicae
Page 1