Page 1

Displaying 1 – 3 of 3

Showing per page

Nonnormality of remainders of some topological groups

Aleksander V. Arhangel'skii, J. van Mill (2016)

Commentationes Mathematicae Universitatis Carolinae

It is known that every remainder of a topological group is Lindelöf or pseudocompact. Motivated by this result, we study in this paper when a topological group G has a normal remainder. In a previous paper we showed that under mild conditions on G , the Continuum Hypothesis implies that if the Čech-Stone remainder G * of G is normal, then it is Lindelöf. Here we continue this line of investigation, mainly for the case of precompact groups. We show that no pseudocompact group, whose weight is uncountable...

Non-normality points and nice spaces

Sergei Logunov (2021)

Commentationes Mathematicae Universitatis Carolinae

J. Terasawa in " β X - { p } are non-normal for non-discrete spaces X " (2007) and the author in “On non-normality points and metrizable crowded spaces” (2007), independently showed for any metrizable crowded space X that each point p of its Čech–Stone remainder X * is a non-normality point of β X . We introduce a new class of spaces, named nice spaces, which contains both of Sorgenfrey line and every metrizable crowded space. We obtain the result above for every nice space.

Currently displaying 1 – 3 of 3

Page 1