Page 1

Displaying 1 – 8 of 8

Showing per page

The Baire property in remainders of topological groups and other results

Aleksander V. Arhangel'skii (2009)

Commentationes Mathematicae Universitatis Carolinae

It is established that a remainder of a non-locally compact topological group G has the Baire property if and only if the space G is not Čech-complete. We also show that if G is a non-locally compact topological group of countable tightness, then either G is submetrizable, or G is the Čech-Stone remainder of an arbitrary remainder Y of G . It follows that if G and H are non-submetrizable topological groups of countable tightness such that some remainders of G and H are homeomorphic, then the spaces...

The minimum uniform compactification of a metric space

R. Grant Woods (1995)

Fundamenta Mathematicae

It is shown that associated with each metric space (X,d) there is a compactification u d X of X that can be characterized as the smallest compactification of X to which each bounded uniformly continuous real-valued continuous function with domain X can be extended. Other characterizations of u d X are presented, and a detailed study of the structure of u d X is undertaken. This culminates in a topological characterization of the outgrowth u d n n , where ( n , d ) is Euclidean n-space with its usual metric.

The subspace of weak P -points of *

Salvador García-Ferreira, Y. F. Ortiz-Castillo (2015)

Commentationes Mathematicae Universitatis Carolinae

Let W be the subspace of * consisting of all weak P -points. It is not hard to see that W is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that W is a p -pseudocompact space for all p * .

Two types of remainders of topological groups

Aleksander V. Arhangel'skii (2008)

Commentationes Mathematicae Universitatis Carolinae

We prove a Dichotomy Theorem: for each Hausdorff compactification b G of an arbitrary topological group G , the remainder b G G is either pseudocompact or Lindelöf. It follows that if a remainder of a topological group is paracompact or Dieudonne complete, then the remainder is Lindelöf, and the group is a paracompact p -space. This answers a question in A.V. Arhangel’skii, Some connections between properties of topological groups and of their remainders, Moscow Univ. Math. Bull. 54:3 (1999), 1–6. It is...

Currently displaying 1 – 8 of 8

Page 1