The search session has expired. Please query the service again.
A scadic space is a Hausdorff continuous image of a product of compact scattered spaces. We complete a theorem begun by G. Chertanov that will establish that for each scadic space X, χ(X) = w(X). A ξ-adic space is a Hausdorff continuous image of a product of compact ordinal spaces. We introduce an either-or chain condition called Property which we show is satisfied by all ξ-adic spaces. Whereas Property is productive, we show that a weaker (but more natural) Property is not productive. Polyadic...
Given a compact Hausdorff space K we consider the Banach space of real continuous functions C(Kⁿ) or equivalently the n-fold injective tensor product or the Banach space of vector valued continuous functions C(K,C(K,C(K...,C(K)...). We address the question of the existence of complemented copies of c₀(ω₁) in under the hypothesis that C(K) contains such a copy. This is related to the results of E. Saab and P. Saab that contains a complemented copy of c₀ if one of the infinite-dimensional Banach...
By studying dimensional types of metric scattered spaces, we consider the wider class of metric σ-discrete spaces. Applying techniques relevant to this wider class, we present new proofs of some embeddable properties of countable metric spaces in such a way that they can be generalized onto uncountable metric scattered spaces. Related topics are also explored, which gives a few new results.
Let ω denote the set of natural numbers. We prove: for every mod-finite ascending chain of infinite subsets of ω, there exists , an infinite maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such that the Stone-Čech remainder βψ∖ψ of the associated ψ-space, ψ = ψ(ω,ℳ ), is homeomorphic to λ + 1 with the order topology. We also prove that for every λ < ⁺, where is the tower number, there exists a mod-finite ascending chain , hence a ψ-space with Stone-Čech remainder...
Currently displaying 1 –
7 of
7