Previous Page 8

Displaying 141 – 158 of 158

Showing per page

The dimension of X^n where X is a separable metric space

John Kulesza (1996)

Fundamenta Mathematicae

For a separable metric space X, we consider possibilities for the sequence S ( X ) = d n : n where d n = d i m X n . In Section 1, a general method for producing examples is given which can be used to realize many of the possible sequences. For example, there is X n such that S ( X n ) = n , n + 1 , n + 2 , . . . , Y n , for n >1, such that S ( Y n ) = n , n + 1 , n + 2 , n + 2 , n + 2 , . . . , and Z such that S(Z) = 4, 4, 6, 6, 7, 8, 9,.... In Section 2, a subset X of 2 is shown to exist which satisfies 1 = d i m X = d i m X 2 and d i m X 3 = 2 .

The fixed point set of open mappings on extremally disconnected spaces

Egbert Thümmel (1994)

Commentationes Mathematicae Universitatis Carolinae

We give an example of an extremally disconnected compact Hausdorff space with an open continuous selfmap such that the fixed point set is nonvoid and nowhere dense, respṫhat there is exactly one nonisolated fixed point.

The Niemytzki plane is ϰ -metrizable

Wojciech Bielas, Andrzej Kucharski, Szymon Plewik (2021)

Mathematica Bohemica

We prove that the Niemytzki plane is ϰ -metrizable and we try to explain the differences between the concepts of a stratifiable space and a ϰ -metrizable space. Also, we give a characterisation of ϰ -metrizable spaces which is modelled on the version described by Chigogidze.

The union of two D-spaces need not be D

Dániel T. Soukup, Paul J. Szeptycki (2013)

Fundamenta Mathematicae

We construct from ⋄ a T₂ example of a hereditarily Lindelöf space X that is not a D-space but is the union of two subspaces both of which are D-spaces. This answers a question of Arhangel'skii.

ω ω -directedness and a question of E. Michael

Peg Daniels (1995)

Commentationes Mathematicae Universitatis Carolinae

We define ω ω -directedness, investigate various properties to determine whether they have this property or not, and use our results to obtain easier proofs of theorems due to Laurence and Alster concerning the existence of a Michael space, i.eȧ Lindelöf space whose product with the irrationals is not Lindelöf.

Currently displaying 141 – 158 of 158

Previous Page 8