Integral Global Weights for Torus Actions on Projective Spaces.
Let be a -space such that the orbit space is metrizable. Suppose a family of slices is given at each point of . We study a construction which associates, under some conditions on the family of slices, with any metric on an invariant metric on . We show also that a family of slices with the required properties exists for any action of a countable group on a locally compact and locally connected metric space.
We consider isometry groups of a fairly general class of non standard products of metric spaces. We present sufficient conditions under which the isometry group of a non standard product of metric spaces splits as a permutation group into direct or wreath product of isometry groups of some metric spaces.