A duality on simplicial complexes.
In the S-category (with compact-open strong shape mappings, cf. §1, instead of continuous mappings, and arbitrary finite-dimensional separable metrizable spaces instead of finite polyhedra) there exists according to [1], [2] an S-duality. The S-dual , turns out to be of the same weak homotopy type as an appropriately defined functional dual (Corollary 4.9). Sometimes the functional object is of the same weak homotopy type as the “real” function space (§5).
If is a -dim polyhedran, then using geometric techniques, we construct groups and such that there are natural isomorphisms and which induce an intersection pairing. These groups give a geometric interpretation of two spectral sequences studied by Zeeman and allow us to prove a conjecture of Zeeman about them.