Page 1

Displaying 1 – 9 of 9

Showing per page

On dimensionally restricted maps

H. Murat Tuncali, Vesko Valov (2002)

Fundamenta Mathematicae

Let f: X → Y be a closed n-dimensional surjective map of metrizable spaces. It is shown that if Y is a C-space, then: (1) the set of all maps g: X → ⁿ with dim(f △ g) = 0 is uniformly dense in C(X,ⁿ); (2) for every 0 ≤ k ≤ n-1 there exists an F σ -subset A k of X such that d i m A k k and the restriction f | ( X A k ) is (n-k-1)-dimensional. These are extensions of theorems by Pasynkov and Toruńczyk, respectively, obtained for finite-dimensional spaces. A generalization of a result due to Dranishnikov and Uspenskij about...

On H ˇ n -bubbles in n-dimensional compacta

Umed Karimov, Dušan Repovš (1998)

Colloquium Mathematicae

A topological space X is called an H ˇ n -bubble (n is a natural number, H ˇ n is Čech cohomology with integer coefficients) if its n-dimensional cohomology H ˇ n ( X ) is nontrivial and the n-dimensional cohomology of every proper subspace is trivial. The main results of our paper are: (1) Any compact metrizable H ˇ n -bubble is locally connected; (2) There exists a 2-dimensional 2-acyclic compact metrizable ANR which does not contain any H ˇ 2 -bubbles; and (3) Every n-acyclic finite-dimensional L H ˇ n -trivial metrizable compactum...

On the dimension of the space of ℝ-places of certain rational function fields

Taras Banakh, Yaroslav Kholyavka, Oles Potyatynyk, Michał Machura, Katarzyna Kuhlmann (2014)

Open Mathematics

We prove that for every n ∈ ℕ the space M(K(x 1, …, x n) of ℝ-places of the field K(x 1, …, x n) of rational functions of n variables with coefficients in a totally Archimedean field K has the topological covering dimension dimM(K(x 1, …, x n)) ≤ n. For n = 2 the space M(K(x 1, x 2)) has covering and integral dimensions dimM(K(x 1, x 2)) = dimℤ M(K(x 1, x 2)) = 2 and the cohomological dimension dimG M(K(x 1, x 2)) = 1 for any Abelian 2-divisible coefficient group G.

On universality of countable and weak products of sigma hereditarily disconnected spaces

Taras Banakh, Robert Cauty (2001)

Fundamenta Mathematicae

Suppose a metrizable separable space Y is sigma hereditarily disconnected, i.e., it is a countable union of hereditarily disconnected subspaces. We prove that the countable power X ω of any subspace X ⊂ Y is not universal for the class ₂ of absolute G δ σ -sets; moreover, if Y is an absolute F σ δ -set, then X ω contains no closed topological copy of the Nagata space = W(I,ℙ); if Y is an absolute G δ -set, then X ω contains no closed copy of the Smirnov space σ = W(I,0). On the other hand, the countable power X ω of...

Currently displaying 1 – 9 of 9

Page 1