On a class of spaces for which the fixed-point property is characterized by homology groups
We work in the smooth category: manifolds and maps are meant to be smooth. Let G be a finite group acting on a connected closed manifold X and f an equivariant self-map on X with f|A fixpointfree, where A is a closed invariant submanifold of X with codim A ≥ 3. The purpose of this paper is to give a proof using obstruction theory of the following fact: If X is simply connected and the action of G on X - A is free, then f is equivariantly deformable rel. A to fixed point free map if and only if the...
We conjecture that every finite group G acting on a contractible CW-complex X of dimension 2 has at least one fixed point. We prove this in the case where G is solvable, and under this additional hypothesis, the result holds for X acyclic.
We give an outline of the Nielsen coincidence theory emphasizing differences between the oriented and non-oriented cases.
We introduce and study the concept of characteristic for metrics. It turns out that metrizable spaces endowed with an L*-operator which admit a metric of characteristic zero play an important role in the theory of fixed points. We prove the existence of such spaces among infinite-dimensional linear topological spaces.
Let be maps where and are connected triangulable oriented n-manifolds so that the set of coincidences is compact in . We define a Nielsen equivalence relation on and assign the coincidence index to each Nielsen coincidence class. In this note, we show that, for n ≥ 3, if where is a connected simply connected topological group and K is a discrete subgroup then all the Nielsen coincidence classes of f and g have the same coincidence index. In particular, when and are compact, f...