Sandwich type theorems
Basic examples show that coincidence theory is intimately related to central subjects of differential topology and homotopy theory such as Kervaire invariants and divisibility properties of Whitehead products and of Hopf invariants. We recall some recent results and ask a few questions which seem to be important for a more comprehensive understanding.
Let K be a CW-complex of dimension 3 such that H³(K;ℤ) = 0, and M a closed manifold of dimension 3 with a base point a ∈ M. We study the problem of existence of a map f: K → M which is strongly surjective, i.e. such that MR[f,a] ≠ 0. In particular if M = S¹ × S² we show that there is no f: K → S¹ × S² which is strongly surjective. On the other hand, for M the non-orientable S¹-bundle over S² there exists a complex K and f: K → M such that MR[f,a] ≠ 0.
Let K be a CW-complex of dimension 3 such that H 3(K;ℤ) = 0 and the orbit space of the 3-sphere with respect to the action of the quaternion group Q 8 determined by the inclusion Q 8 ⊆ . Given a point a ∈ , we show that there is no map f:K → which is strongly surjective, i.e., such that MR[f,a]=min(g −1(a))|g ∈ [f] ≠ 0.
Given a model 2-complex K P of a group presentation P, we associate to it an integer matrix ΔP and we prove that a cellular map f: K P → S 2 is root free (is not strongly surjective) if and only if the diophantine linear system ΔP Y = (f) has an integer solution, here (f)is the so-called vector-degree of f