Displaying 41 – 60 of 64

Showing per page

Parametrized Borsuk-Ulam problem for projective space bundles

Mahender Singh (2011)

Fundamenta Mathematicae

Let π: E → B be a fiber bundle with fiber having the mod 2 cohomology algebra of a real or a complex projective space and let π’: E’ → B be a vector bundle such that ℤ₂ acts fiber preserving and freely on E and E’-0, where 0 stands for the zero section of the bundle π’: E’ → B. For a fiber preserving ℤ₂-equivariant map f: E → E’, we estimate the cohomological dimension of the zero set Z f = x E | f ( x ) = 0 . As an application, we also estimate the cohomological dimension of the ℤ₂-coincidence set A f = x E | f ( x ) = f ( T ( x ) ) of a fiber preserving...

Relative Borsuk-Ulam Theorems for Spaces with a Free ℤ₂-action

Denise de Mattos, Thaís F. M. Monis, Edivaldo L. dos Santos (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Let (X,A) be a pair of topological spaces, T : X → X a free involution and A a T-invariant subset of X. In this context, a question that naturally arises is whether or not all continuous maps f : X k have a T-coincidence point, that is, a point x ∈ X with f(x) = f(T(x)). In this paper, we obtain results of this nature under cohomological conditions on the spaces A and X.

Suites spectrales de Hochschild-Serre à coefficients dans un espace semi-normé.

Abdesselam Bouarich (2005)

Extracta Mathematicae

In this paper, we prove the existence of the theory of spectral sequences in the category of real semi normed spaces. Using this theory, we associate to any extension of discrete groups the Hochschild-Serre spectral sequence in bounded cohomology with coefficients. In addition, we give the explicit expression of the first and the second term of this spectral sequence without further hypothesis.

The Equivariant Bundle Subtraction Theorem and its applications

Masaharu Morimoto, Krzysztof Pawałowski (1999)

Fundamenta Mathematicae

In the theory of transformation groups, it is important to know what kind of isotropy subgroups of G do occur at points of the space upon which the given group G acts. In this article, for a finite group G, we prove the Equivariant Bundle Subtraction Theorem (Theorem 2.2) which allows us to construct smooth G-manifolds with prescribed isotropy subgroups around the G-fixed point sets. In Theorem 0.1, we restate Oliver's result about manifolds M and G-vector bundles over M that occur, respectively,...

Currently displaying 41 – 60 of 64