On the Homology of Finite Free (Z/2)n-Complexes.
Let π: E → B be a fiber bundle with fiber having the mod 2 cohomology algebra of a real or a complex projective space and let π’: E’ → B be a vector bundle such that ℤ₂ acts fiber preserving and freely on E and E’-0, where 0 stands for the zero section of the bundle π’: E’ → B. For a fiber preserving ℤ₂-equivariant map f: E → E’, we estimate the cohomological dimension of the zero set . As an application, we also estimate the cohomological dimension of the ℤ₂-coincidence set of a fiber preserving...
Let (X,A) be a pair of topological spaces, T : X → X a free involution and A a T-invariant subset of X. In this context, a question that naturally arises is whether or not all continuous maps have a T-coincidence point, that is, a point x ∈ X with f(x) = f(T(x)). In this paper, we obtain results of this nature under cohomological conditions on the spaces A and X.
In this paper, we prove the existence of the theory of spectral sequences in the category of real semi normed spaces. Using this theory, we associate to any extension of discrete groups the Hochschild-Serre spectral sequence in bounded cohomology with coefficients. In addition, we give the explicit expression of the first and the second term of this spectral sequence without further hypothesis.
In the theory of transformation groups, it is important to know what kind of isotropy subgroups of G do occur at points of the space upon which the given group G acts. In this article, for a finite group G, we prove the Equivariant Bundle Subtraction Theorem (Theorem 2.2) which allows us to construct smooth G-manifolds with prescribed isotropy subgroups around the G-fixed point sets. In Theorem 0.1, we restate Oliver's result about manifolds M and G-vector bundles over M that occur, respectively,...