Displaying 301 – 320 of 560

Showing per page

Nielsen theory of transversal fixed point sets (with an appendix: C and C0 fixed point sets are the same, by R. E. Greene)

Helga Schirmer (1992)

Fundamenta Mathematicae

Examples exist of smooth maps on the boundary of a smooth manifold M which allow continuous extensions over M without fixed points but no such smooth extensions. Such maps are studied here in more detail. They have a minimal fixed point set when all transversally fixed maps in their homotopy class are considered. Therefore we introduce a Nielsen fixed point theory for transversally fixed maps on smooth manifolds without or with boundary, and use it to calculate the minimum number of fixed points...

On cat(X p ).

Rivadeneyra Perez, Juan Julian (1992)

International Journal of Mathematics and Mathematical Sciences

On dimensionally restricted maps

H. Murat Tuncali, Vesko Valov (2002)

Fundamenta Mathematicae

Let f: X → Y be a closed n-dimensional surjective map of metrizable spaces. It is shown that if Y is a C-space, then: (1) the set of all maps g: X → ⁿ with dim(f △ g) = 0 is uniformly dense in C(X,ⁿ); (2) for every 0 ≤ k ≤ n-1 there exists an F σ -subset A k of X such that d i m A k k and the restriction f | ( X A k ) is (n-k-1)-dimensional. These are extensions of theorems by Pasynkov and Toruńczyk, respectively, obtained for finite-dimensional spaces. A generalization of a result due to Dranishnikov and Uspenskij about...

On equivariant deformations of maps.

Antonio Vidal (1988)

Publicacions Matemàtiques

We work in the smooth category: manifolds and maps are meant to be smooth. Let G be a finite group acting on a connected closed manifold X and f an equivariant self-map on X with f|A fixpointfree, where A is a closed invariant submanifold of X with codim A ≥ 3. The purpose of this paper is to give a proof using obstruction theory of the following fact: If X is simply connected and the action of G on X - A is free, then f is equivariantly deformable rel. A to fixed point free map if and only if the...

On finite groups acting on acyclic complexes of dimension two.

Carles Casacuberta, Warren Dicks (1992)

Publicacions Matemàtiques

We conjecture that every finite group G acting on a contractible CW-complex X of dimension 2 has at least one fixed point. We prove this in the case where G is solvable, and under this additional hypothesis, the result holds for X acyclic.

Currently displaying 301 – 320 of 560