The search session has expired. Please query the service again.
Let π: E → B be a fiber bundle with fiber having the mod 2 cohomology algebra of a real or a complex projective space and let π’: E’ → B be a vector bundle such that ℤ₂ acts fiber preserving and freely on E and E’-0, where 0 stands for the zero section of the bundle π’: E’ → B. For a fiber preserving ℤ₂-equivariant map f: E → E’, we estimate the cohomological dimension of the zero set . As an application, we also estimate the cohomological dimension of the ℤ₂-coincidence set of a fiber preserving...
Further extension of the Levinson transformation theory is performed for partially dissipative periodic processes via the fixed point index. Thus, for example, the periodic problem for differential inclusions can be treated by means of the multivalued Poincaré translation operator. In a certain case, the well-known Ważewski principle can also be generalized in this way, because no transversality is required on the boundary.
We shall consider periodic problems for ordinary differential equations of the form
where satisfies suitable assumptions. To study the above problem we shall follow an approach based on the topological degree theory. Roughly speaking, if on some ball of , the topological degree of, associated to (), multivalued Poincaré operator turns out to be different from zero, then problem () has solutions. Next by using the multivalued version of the classical Liapunov-Krasnoselskǐ guiding potential...
We prove that the Poincaré map has at least fixed points (whose trajectories are contained inside the segment W) where the homeomorphism is given by the segment W.
We prove that every commutative differential graded algebra whose cohomology is a simply-connected Poincaré duality algebra is quasi-isomorphic to one whose underlying algebra is simply-connected and satisfies Poincaré duality in the same dimension. This has applications in rational homotopy, giving Poincaré duality at the cochain level, which is of interest in particular in the study of configuration spaces and in string topology.
Currently displaying 1 –
14 of
14