LS category of classifying spaces and 2-cones.
We study the Lusternik-Schnirelmann category of some CW-complexes with 3 cells, built on Y = S2n Uk[i2n,i2n] e4n. In particular, we prove that an R-local space, in the sense of D. Anick, of LS-category 3 and of the homotopy type of a CW-complex with 3 R-cells, has a cup-product of length 3 in its algebra of cohomology. This result is no longer true in the framework of mild spaces.