Families of spheres
In a paper written in 1876 [4], Felix Klein gave a formula relating the number of real flexes of a generic real plane projective curve to the number of real bitangents at non-real points and the degree, which shows in particular that the number of real flexes cannot exceed one third of the total number of flexes. We show that Klein's arguments can be made rigorous using a little of the theory of singularities of maps, justifying in particular his resort to explicit examples.
We study the final situations which may be obtained for a singular vector field by permissible blowing-ups of the ambient space (in dimension three). These situations are preserved by permissible blowing-ups and its structure is simple from the view-point of the integral branches. Technically, we take a logarithmic approach, by marking in each step the exceptional divisor of the transformation.
Pour tout triplet d’entiers tels que , se pose la question d’étudier les germes de difféomorphismes ou de champs de vecteurs sur , de classe , -déterminés en classe , c’est-à-dire respectivement conjugués ou équivalents en classe , à tout germe ayant la même classe et le même -jet. Cette question est abordée ici, avec quelque généralité en dimension 2 et pour les germes de champs de vecteurs de codimension 2, en dimension 3 et 4. Une conséquence de cette dernière étude est l’existence...
In this paper, we give some examples which point to the non-existence of -global stable diagrams , compact. If : is fixed we define the -equivalence for maps and the corresponding -stability. The globalization procedure works and we can compare the -stability, -infinitesimal stability, and -homotopical stability. Also we give some characterization theorems for lower dimensions.
In this paper we prove the implicit function theorem for locally blow-analytic functions, and as an interesting application of using blow-analytic homeomorphisms, we describe a very easy way to resolve singularities of analytic curves.